Exponentiation in Power Series Fields
نویسندگان
چکیده
We prove that for no nontrivial ordered abelian group G, the ordered power series field R((G)) admits an exponential, i.e. an isomorphism between its ordered additive group and its ordered multiplicative group of positive elements, but that there is a nonsurjective logarithm. For an arbitrary ordered field k, no exponential on k((G)) is compatible, that is, induces an exponential on k through the residue map. This is proved by showing that certain functional equations for lexicographic powers of ordered sets are not solvable.
منابع مشابه
D ec 2 00 5 κ - bounded Exponential - Logarithmic Power Series Fields ∗
In [K–K–S] it was shown that fields of generalized power series cannot admit an exponential function. In this paper, we construct fields of generalized power series with bounded support which admit an exponential. We give a natural definition of an exponential, which makes these fields into models of real exponentiation. The method allows to construct for every κ regular uncountable cardinal, 2...
متن کاملκ-bounded Exponential-Logarithmic Power Series Fields
In [K–K–S] it was shown that fields of generalized power series cannot admit an exponential function. In this paper, we construct fields of generalized power series with bounded support which admit an exponential. We give a natural definition of an exponential, which makes these fields into models of real exponentiation. The method allows to construct for every κ regular uncountable cardinal, 2...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملResidue fields of arbitrary convex valuations on restricted analytic fields with exponentiation
In their paper [D–M–M2], van den Dries, Macintyre and Marker give an explicit construction of a nonarchimedean model of the theory of the reals with restricted analytic functions and exponentiation. This model, called the logarithmic exponential power series field, lies in a generalized power series field. They use the results of Ressayre and Mourgues about truncation-closed embeddings to answe...
متن کاملNSM 2006 Nonstandard Methods Congress , Pisa
• Since Wilkie’s result [9] (which established that the elementary theory Texp of (R, exp) is model complete and o-minimal), many o-minimal expansions of the reals have been investigated. The problem of constructing nonarchimedean models of Texp (and more generally, of an ominimal expansion of the reals) gained much interest. • In [2] it was shown that fields of generalized power series cannot ...
متن کامل